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1. Introduction

I have a die I am about to throw. I have no information that the
die is loaded, no reason to suspect it is not a fair die. There are six
different ways the die could land, on any one of its six faces. What
probabilities should I assign to these different possible outcomes?

It seems reasonable to assign the same probability to each
possibility, concluding that each face has a } probability of coming
up. This seems like the right physical probability, or objective
likelihood, of getting any particular face when I throw the die, as
well the subjective probability, or degree of belief, I should have in
each one. (You might think that there are no objective probabil-
ities here. You might think that there can be no chances other than
0 or 1 if the laws are deterministic; or that there are no objective
probabilities at all in the world. I disagree, but leave this aside for
now.! If you have such a view, you can translate my talk of
probability into your preferred subjectivist terms.) Since I have no
information that the die is loaded, and there appear to be no other
asymmetries that would make a difference to the outcome, if |
said that the face with number 5 on it has a probability greater
than }, this would strike you as an arbitrary, unreasonable
preference; I would be irrational to bet at those odds. To prefer
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1 Loewer (2001, 2004) argues that a best-system account of laws, for one,
allows for deterministic chance. (See Frigg, 2008a, forthcoming; Winsberg, 2008
for disagreement.) More on setting this aside, below.
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one face without any relevant reason is to rely on factors that have
nothing to do with the actual state or behavior of the die.

Instead, I should infer that each face has a ! probability of
coming up. And my degrees of belief should follow suit. The
reason to infer symmetric probabilities is the symmetry in the die
and my epistemic state with respect to the different possible
outcomes.

In cases like these, we reason as follows. First, look at the
symmetries in the set-up. Then use these to determine the
outcome space, the set of elementary possibilities to which we
initially assign probabilities. (The outcome space for the die is
{1,2,3,4,5,6}.2) Finally, assign an equal probability to each such
possibility. Distribute probabilities, both objective and subjective,
uniformly over the possibility space.® Calculate the probabilities
of any non-elementary events from these basic probabilities
(using the standard probability calculus, say).

We rely on this principle: assign an equal probability to each
basic possibility, where the possibilities are given by symmetries
relative to our knowledge of the situation. This is an “indifference
principle”: infer a distribution that is indifferent among the
outcomes which, for all we know, could obtain. This principle
underlies our everyday reasoning for the outcomes of die throws,

2 We could specify the outcome space in terms of propositions rather than
sets.

3 Strevens (1998) calls this a “non-enumerative statistical induction.” We infer
the probabilities by inspecting the symmetries in the set-up, not by tallying up the
frequencies with which we observe the different outcomes to occur.
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coin tosses, and the like. It works. Symmetric probabilities
approximate the observed frequencies. A fair die does come up
number 5 approximately }th of the time, an unbiased coin lands
heads in about half the tosses.

Remarkable. Very little information is needed to infer the right
probabilities. Just by inspecting the symmetries in the set-up,
before witnessing any outcomes, we make extremely successful
probabilistic predictions. This arouses suspicion. Do symmetries
alone indicate these probabilities? If not, then why are we so
successful in our probabilistic predictions?

One distinguished tradition holds that symmetries do tell us
the probabilities.* On this view, we can have a priori knowledge of
outcomes’ probabilities, given the relevant symmetries in the set-
up. A similar idea lies in epistemological views claiming that
symmetries dictate what initial credences one ought to have. Both
these views say that symmetries dictate our initial probability
attributions.

I think these views are misguided. Symmetries alone cannot
explain the success of our probability assignments; nor, I will
argue, do they suffice to justify the probabilistic inferences we
make. Reasons to reject indifference principles are familiar, but
instructive. They suggest a new explanation, at its core empirical. [
argue that these inferences are successful because, and when, the
observed symmetries align with underlying symmetries in the
world, indicated by the fundamental dynamical laws. This tells
against any use of indifference, even for constraining our initial
credences.

2. Symmetric probability: classical physics

Do symmetries explain the probabilities we use in physics, as
they seem to do for the outcomes of die throws? An important
example suggests so: classical statistical mechanics.”> Many books
and papers on statistical mechanics cite an indifference principle®
to justify and explain these probabilities” (if any underlying
principle is offered®). Though I agree that symmetries have a role, I
disagree on the kind of symmetries at work. That disagreement is
important. Once we better understand these symmetries, we can
explain the use of these probabilities—in a different, ultimately
empirical, way.

First, a refresher on some features of statistical mechanics that
we will need here. There remains lots of disagreement on the
proper understanding and formulation of the theory. I cannot do
justice to the different approaches here. I will generally assume a
Boltzmannian approach, though this should not affect my main

4 See Van Fraassen (1989, chap. 12) on this tradition, which traces back to
Laplace.

51 think that similar conclusions hold for the probabilities of quantum
statistical mechanics, but this raises additional technical issues not central here.
(See Wallace, 2002, for argument that things will be different in that case.) I limit
discussion to classical theories. Emch (2007) is a review of issues in foundations of
quantum statistical mechanics.

6 Another approach tries to derive the probabilities from the dynamics using
results from ergodic theory. For discussion and references, see Ehrenfest and
Ehrenfest (2002), Sklar (1993), and Uffink (2004, 2007). The results have not been
shown to hold of ordinary systems (Earman & Rédei, 1996); indeed, Goldstein
(2001) argues that the statistical mechanical conclusions hold regardless of
ergodicity. Nor can the ergodic approach avoid the need for some initial probability
assumption. Sklar (1973, 1993, 182-188), Leeds (1989), Earman and Rédei (1996),
and van Lith (2001) discuss the problem and proposed solutions. Malament and
Zabell (1980) and Vranas (1998) are improvements on the traditional approach. For
more on the variety of approaches to understanding probability in statistical
mechanics, both historical and current, see von Plato (1994) and Guttman (1999).

7 As, for example, in Tolman, 1979, 59-61, Landau and Lifshitz (1980, 5), and
Feynman, Leighton, and Sands (2006, chap. 6). Tolman takes indifference as a
prima facie constraint; I argue against this more limited use of indifference, too.

8 Feynman (1998, chap. 1) posits the probabilities more as fundamental law.

conclusions. (This is because the different approaches all rely on
some version of the “statistical postulate” that is my focus here.)®
At worst, take my conclusions as applying to a Boltzmannian
framework. At best, take them to apply more generally, while at
the same time furthering the cause of that framework.

The fundamental state of a classical system is specified by the
positions and momenta of its particles (along with the particles’
intrinsic features, like mass and charge). The different possible
states of a system are represented mathematically in a statespace.
In classical statistical mechanics, the statespace is called phase
space. For a system of n particles, the statespace has 6n
dimensions, one per position and momentum coordinate per
particle (assuming the particles move freely in three spatial
dimensions).!° Each point in phase space represents a different
possible exact state, or microstate, of the system. A macrostate,
given by the system’s macroscopic features, like the average
temperature, pressure, and volume, corresponds to a region in
phase space, each point of which represents a microstate that
realizes the macrostate.!’ The history of a system is represented
by a trajectory through phase space; this is picked out by the
dynamics, given the initial state and energy function.!?

To make predictions about a system, we place a probability
distribution over the region in phase space corresponding to its
macrostate—the region containing the points representing micro-
states compatible with the system’s macroscopic features. The
standard distribution that is used is uniform, with respect to the
standard measure (the standard Lebesgue measure, defined over
the canonical coordinates).”® This distribution assigns equal
probabilities to equal phase space volumes, on the standard
measure, with the result that the probability of a phase space
region, such as the region compatible with a system’s macrostate,
is proportional to its standard volume. This distribution assigns an
equal probability (density'4) to each microstate compatible with
the system’s macrostate.

9 On the idea that the views all rely on a version of this postulate, see
Callender (2008). On the “hodgepodge of approaches, formulations, and schools”
(Sklar, 1993, 5), see Penrose (1979), Sklar (1993), Uffink (1996b), Frigg (2008b). On
the development and foundations of statistical mechanics, see Ehrenfest and
Ehrenfest (2002), Sklar (1973, 1993, 2000, 2001, 2007), Hagar (2005), Uffink
(2007), Frigg (2008a, 2008b). On Gibbs’ approach, see Gibbs (1902), Ehrenfest and
Ehrenfest (2002), Sklar (1993), Lavis (2005, 2008), Earman (2006), Pitowsky
(2006), Uffink (2007). Arguments for Boltzmann’s approach are in Lebowitz
(19934, 1993b, 1993c, 1999a, 1999b), Bricmont (1995), Maudlin (1995), Callender
(1999), Albert (2000), Goldstein (2001), Goldstein and Lebowitz (2004); against
the approach, see Earman (2006). On ergodicity, see footnote 6. Some textbooks, of
varying approaches: Khinchin (1949), Prigogine (1961), Tolman (1979), Landau and
Lifshitz (1980), Pathria (1996), Penrose (2005).

10 In general, the phase space has dimension 2nr, where n is the number of
particles and r is the number of degrees of freedom.

! The set of macrostate regions partitions the available phase space. I leave
aside the question of which features specify a system’s macrostate. We can assume
here that there is a set of macroscopic features, in terms of which there are
empirical regularities (such as those of thermodynamics) that we try to explain by
means of statistical mechanics.

12 1 assume throughout that a given system is energetically isolated. This
assumption is not uncontroversial. It is rejected in particular by advocates of
interventionist approaches to explaining thermodynamics on the basis of
statistical mechanics.

3 More on canonical coordinates below. This measure is also called the
Liouville or microcanonical measure. Lebesgue measure is the natural extension of
volume to high-dimensional spaces. Following Lebowitz (1999b), let I' be the
phase space, M the system’s macrostate, and I'y, the sub-region of I" corresponding
to M. The measure of the set of microstates corresponding to a subset of Iy is then
given by the 6n-dimensional Liouville volume of the subset, normalized by the
volume of I'y, labeled |I'y|: |[I'y| = er Zf’: ,dr; dp;, with r; and p; the position and
momentum of the i th particle.

4 For convenience, I talk of probabilities of microstates, represented by points
in phase space, where these are really probability densities; the probabilities of
microstates are really the probabilities of regions of microstates.
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A few caveats. First, there are well-known problems with
placing uniform probabilities over the microstates compatible
with a system’s current macrostate. These problems have to do
with explaining the time-asymmetry of thermodynamic beha-
vior.!® Some try to solve the problem by taking the uniform
distribution only over microstates within a proper subset of the
region representing a current macrostate. In Section 5, I say why
one’s view on this should not affect things here; in particular, why
it should not matter for our purposes whether we assume a
current uniform distribution, or one that is uniform at the initial
time and conditionalized on past low entropy for all other times.
Set this aside for now.

Second, notice that we do not place the uniform distribution
over a system'’s entire, unbounded, infinite-volume phase space,
but over the (bounded) region in phase space corresponding to its
macrostate.!® Typically, the constant energy is one such con-
straint. So that the distribution is uniform over the sub-region of
the (6n — 1)- dimensional energy hypersurface compatible with
the system’s other macroscopic features. That is, we take the
induced or conditionalized measure on the relevant region of the
(6n — 1)- dimensional energy hypersurface (the microcanonical
measure); alternatively, of the thickened energy shell.'”

This raises a question. I have been talking as though not only
the initial distribution over a phase space region, but one that is
restricted to a given sub-region (such as a region of the energy
hypersurface), will be uniform throughout that sub-region. Why
think that an initially uniform distribution will, when conditio-
nalized on a set of macroscopic features, induce a similarly
uniform distribution? This is a big question. However, it is
commonly assumed that an initial uniform distribution, restricted
to such a (possibly lower-dimensional) sub-region, will be at least
approximately uniform over that sub-region. I return to this in
Section 5. For the purpose of this paper, I assume that this is
plausible; proofs of such claims in statistical mechanics are
notoriously difficult to come by. Yet the dynamics plausibly make
the assumption reasonable. Thus, Lebowitz says that, although it
“would of course be nice to prove this in all cases ... . Our
mathematical abilities are, however, equal to this task only in very
simple situations ... . These results should, however, be enough
to convince a ‘reasonable’ person” (1999a, 521).!® In any case, and
most important for our purposes here, the initial distribution,

15 In addition, it is incoherent to apply the uniform distribution at more than
one time in a system'’s history, at least given an objective understanding of the
probabilities: see Sklar (1993, 265, 294); Albert (2000, 79-80). Leeds (2003) avoids
this problem with an alternative understanding of the probabilities.

16 The assumption of a bounded phase space is made throughout statistical
mechanics. It is crucial to many key results, like Liouville’s theorem. This is a
reasonable assumption to make for classical isolated systems, like boxes of gas,
which have constant energy and are of finite size. [ set aside the large question of
how, and whether, we can apply this to systems in which gravity is the dominant
force (where the phase space may be unbounded): see Earman (1981, 2006) and
Callender (2008, forthcoming) for discussion.

17 The thickened energy shell contains microstates for which the system’s
Hamiltonian lies between energy E and E+JE. (Thanks to an anonymous referee
for pointing this out.)

18 Callender writes of this assumption, needed especially by the Boltzmannian
who conditionalizes the uniform distribution on a low entropy past state of the
universe:

[T]he Boltzmannian must cross one's fingers and hope that the dynamics is

kind. Recall that any sub-system corresponds, in phase space, to a lower-

dimensional subspace of the original phase space. The hope must be that when
we project the original approximately uniform distribution onto this subspace
and renormalize we again find a distribution that is approximately uniform.

Pictorially, imagine a plane and a thoroughly fibrillated set of points on this

plane, a set so fibrillated that it corresponds to an approximately uniform

measure. Now draw a line at random through this plane and color in the points
on the line that intersect the fibrillated set. Are these colored points
themselves approximately uniformly distributed? That is what the Boltzman-
nian needs for local thermodynamic systems, except with vastly many higher

taken over a given macrostate phase space region, is generally
assumed to be uniform, regardless of whether or not a relevantly
conditionalized distribution will be likewise uniform throughout
a sub-region. And it is this initial uniformity that is my focus here.
Set this, too, aside for now.

There is no question that these probabilities are empirically
successful.!® Consider the statistical-mechanical explanations of
thermodynamic phenomena. In equilibrium statistical mechanics,
these probabilities are used to calculate the values of a system’s
macroscopic features at thermal equilibrium. The probabilities
can also be used to explain the tendency of isolated systems to
increase in entropy—of a gas to spread out in its container, of a
cup of coffee to cool down. Part of the explanation of this
tendency is that, out of all the microstates compatible with a
system’s current macroscopic constraints, the overwhelming
majority, on the standard measure, lie on trajectories that

(footnote continued)

dimensions originally and much greater dimensional gaps between the phase
space and subspaces.

How are we to evaluate this reply? Based on experience with many types of
systems, some physicists don’t balk at the thought of such fibrillation. They see
it in some of the systems they deal with and in the absence of constraints ask
why things shouldn’t be so fibrillated. The unhappy truth, however, is that we
simply have no idea how to evaluate this claim in general (2008, 25).

Even so, Callender says, “My own attitude is to note this assumption as a large one
and move on.” This is what I will do here. (Note that this is where ergodic results
can be useful, by helping to make this assumption plausible.)

A referee objects that the standard restricted measure is not uniform over the
relevant sub-space, for it is divided by the gradient of the Hamiltonian; cf. Kac
(1959, 63), Frigg (2008b, 180, eq. 3.46). (Though Jos Uffink points out that the
microcanonical distribution on the thickened energy shell will be uniform over the
canonical coordinates of the shell.) Yet as far as I can tell, the restricted distribution
is often assumed to be approximately uniform over a sub-region (for typical macro
systems: footnote 22), while it is also acknowledged that we do not have a proof.
Sklar (1993, 95-96) writes that, assuming the distribution is absolutely continuous
with the standard measure, “a single probability function can be obtained that
‘spreads the probability’ over the appropriate region of phase-space so that the
total probability assigned to a region is obtained by a measure of the amount of the
total probability over the whole phase-space that is spread in the region in
question. Most commonly in statistical mechanics it is ‘uniform’ spreading that is
posited, the probability being assigned to a region of micro-states just being
proportional to the size of that region in the chosen measure.” To put it another
way, it is commonly assumed that an initial set of phase points will at later times
be “fibrillated” over the available phase space (Sklar, 1993, 233-234). In any case,
even if the restricted distribution is not uniform, it is typically obtained by
restricting an initial distribution that is. Similarly, according to the past low
entropy approach, uniform probabilities hold only at the beginning of the universe,
at other times approximating uniform ones.

19 Although there is a big question about the range of phenomena they are
successful for. Jos Uffink objects that the above recipe works only for systems in
thermal equilibrium. For we can prepare systems not in equilibrium, like vials of
gas released into larger containers, for which predictions using the standard
measure (over the canonical coordinates of the larger container) will generally be
wrong, at least until equilibrium is reached. This is true when directed at the
techniques of equilibrium statistical mechanics. And throughout the discussion
that follows, we may assume that the system in question is in local equilibrium. It
is generally agreed that the uniform distribution over the system’s macrostate
region works for equilibrium statistical mechanics; for example, to calculate the
values of its macroscopic features at equilibrium. I happen to think that we can
extend these probabilities to non-equilibrium systems too, though this is more
contentious. For argument that we can so extend them, at least given a
Boltzmannian conception of entropy, see Callender (1999), Lebowitz (1999b),
and Goldstein and Lebowitz (2004). Arguably, the above recipe should succeed for
predicting non-equilibrium behaviors, such as that the gas will spread out until it
reaches the equilibrium macrostate compatible with the new volume constraint,
even if it will not yield the right macroscopic features of the gas until it reaches
equilibrium. For, plausibly, the overwhelming majority of microstates on the
energy hypersurface, on the standard measure, will increase in entropy to the
equilibrium macrostate and then stay there. Showing that this succeeds generally
(and in detail, such as predicting the rate of approach to equilibrium) remains a
large project. I take it that recent work (Albert, 2000, 2008, being primary
examples) has made this plausible (for more discussion see North, forthcoming). If
you disagree, consider the discussion as limited to the standard probability
measure of equilibrium statistical mechanics.
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deterministically take the system into higher-entropy future
macrostates. A uniform probability distribution with respect to
this measure then says that the entropy-increasing microstates
are overwhelmingly probable.?° (Conditionalizing on the energy
constraint, the distribution says that the microstates realizing the
equilibrium macrostate take up the overwhelming majority of the
hypersurface area, and so are overwhelmingly probable.)

But what explains the success of the uniform distribution?
Why are these the right probabilities to use? This is not obvious.
Since the set of microstates compatible with a given macrostate is
continuously infinite, there are many probability assignments we
could use. (I return to this.) Why this one? Similarly, why the
standard volume measure? Different measures of phase space
regions will likewise result in different probabilities for a system’s
possible microstates.?!

At this point, you might worry about the success that we are
trying to explain. You might worry that the above method for
grounding thermodynamic phenomena like entropy increase cannot
always work. Thermodynamic generalizations like the second law are
not strictly true. They hold probabilistically, and only for energetically
isolated and large enough systems.?? Even once a system has reached
thermal equilibrium, for instance, there will be fluctuations out of
equilibrium. Indeed, given the time reversal invariance and deter-
minism of the underlying micro-dynamical laws, we know that
entropy increase will not always hold.

In reply, keep in mind that our goal is to explain these
probabilities, and their grounding of various macroscopic beha-
viors, insofar as these macroscopic behaviors hold. This is not to
deny that systems fluctuate out of equilibrium; that they can
exhibit short-term anti-thermodynamic behavior; that non-
isolated systems can reliably decrease in entropy; and so on. |
take it that we already know, from thought experiments like
Maxwell’s demon, and from the reversibility and recurrence
objections of Poincaré, Loschmidt, and Zermelo, that the general-
izations grounded by statistical mechanics are not strict, but
probabilistic; and even then, that they hold only given that we do
not have the epistemic access and manipulative capacities of a
Maxwellian demon. The question is: why do these probabilities
work in grounding macroscopic generalizations, to the extent that
those generalizations hold??3

Enter indifference. Any system is in one of the microstates
compatible with its macrostate. And we have no reason to think it

20 This type of argument is relatively standard (though the interpretation will
be very different on a Gibbsian conception of the probabilities). Proofs are difficult
to come by. I take it that the claim is plausible, which is not to deny the work in
foundations of statistical mechanics aimed at giving it more conclusive status. See
also footnote 19.

21 Of course, when people question the probabilities of statistical mechanics,
they often have more in mind than wondering about uniformity. Some wonder
whether these probabilities are unique; I say later why I think that this worry is
misguided. Others wonder about the nature of the probabilities, especially given
the deterministic dynamics. This is a large issue, which I leave aside; I say below
why it should not affect my conclusions here. My focus is on why the distribution
is reasonable and successful, and to suggest that these same reasons underlie the
success of our everyday probability inferences.

22 This is not uncontroversial; see Callender (2001) for argument. A referee
mentions the one-dimensional harmonic oscillator. Its motion is periodic and will
not be accurately predicted by the uniform distribution; some phase points are
preferred (Penrose, 2005, 41). I take it that the goal is to explain the probabilities’
grounding of macroscopic behavior. And we know that some systems’ motions, like
that of the one-dimensional harmonic oscillator, will not fall under the
thermodynamic generalizations that we use statistical mechanics to explain;
think of a few isolated, non-interacting particles bouncing back and forth in a box.
The intuition is that such systems are rare or special, the more so the larger the
number of particles. As Sklar (1993, 241) puts it, “plainly, the large number of
micro-components is essential for the thermodynamic behavior of systems.”

23 More contentiously, statistical mechanics may be able to predict the anti-
thermodynamic behavior as well, as Albert (2000, 2008) argues.

is more likely to be in one rather than any other. Conclusion?
Assign an equal probability to each possible one.?* This is akin to
our reasoning for the die. Absent reason to the contrary, weight
each possibility consistent with our knowledge equally. (Hence
the ‘hypothesis of equal a priori probabilities’ in physics books.) It
seems we can figure out what probabilities to use in statistical
mechanics from a priori indifference reasoning, just as we seem
able to do in our everyday inferences about die throws. Initial
symmetries seem to justify our probability attributions and to
explain their success.

There are two general reasons that this cannot be right. The
first is familiar, but worth mentioning in order to motivate an
alternative. Probability assignments depend on how the possibi-
lities are described. And in general there is no a priori way of
picking out a unique and non-arbitrary set of parameters to use.?>
We must choose a parameterization in order to assign probabil-
ities, and indifference is no help here. It says, given a parameter-
ization, distribute probabilities uniformly. It does not also say
which parametrization to use; and there is no a priori reason to
think that any one is correct. Indifference, then, just will not say
what the probabilities are. At best, it gives probabilities relative to
an arbitrary choice of description.2®

There is a second reason that we cannot infer the statistical
mechanical probabilities from a priori indifference, a reason that I
take to be just as decisive, but which the defender of indifference
admittedly need not buy. We use these probabilities to success-
fully predict and explain the observed frequencies of outcomes.
And it is hard to believe that symmetries could tell us a priori
about this kind of empirical matter. Of course, it is too strong to
object that symmetries do not give a logical guarantee of the right
results. Indifference may simply be an initial, defeasible basis for
inferring probabilities, constraining what we ought to initially
infer. Still, there seems no a priori reason to think the actual
frequencies likely to track the symmetries—no a priori reason that
nature will not prefer some microstates to others—so no a priori
reason to think we must set our credences by the symmetries.?’

24 The standard volume measure also seems to give equal sizes to macrostates
with the same “number” of microstates. I return to this in Section 4, focusing here
on uniformity.

25 An example (van Fraassen, 1989, 303): A factory makes cubes with side
length <1 foot. What is the probability that a cube’s side length is < 1 foot? The
answer depends on whether we distribute probabilities uniformly over side length
(3), area (}), or volume (). Knowing more about the cube factory could do the job,
but this just reinforces the conclusion that indifference alone will not. Other
familiar examples are Bertrand’s paradox, Buffon’s needle, von Mises’ water and
wine case (von Mises, 1981, 66-81). See van Fraassen (1989, chap. 12) for
discussion and references. Nor will indifference suffice for the die: compare the
probability of its coming up even vs. odd, prime vs. non-prime, one vs. non-one
(Sklar, 1993, 199). Sklar notes that if the basic possibilities must be indecompo-
sable events, then indifference will yield unique probabilities; and this differs from
the infinite case, where the basic events all get probability zero, on any
distribution (footnote 26). Even then, though, we need an independent sense of
indecomposability, and this will not be given a priori.

26 Things are worse for infinite possibility spaces like phase space. The basic
probabilities will not determine the probabilities of infinite (measurable) sets. At
best, uniformity yields the zero-probability outcomes. Take a countable set of
possibilities. Equal finite probabilities violates a probability axiom; zero prob-
abilities violates countable additivity (likewise for infinitesimal probabilities: the
sum will not converge to 1); and even dropping countable additivity, there is no
unique uniform distribution. For uncountable spaces, think of the points on the
real unit interval. Even assuming uniformity, the probabilities of the points will not
determine the probabilities of sub-intervals ((rq,r2), 1 and r, distinct reals
between 0 and 1). For there is no unique measure of the intervals to begin with.

27 Analogous objections are in Strevens (1998), Albert (2000, chap. 3),
Goldstein (2001), Loewer (2001), and in a different way Ismael (2009). See van
Fraassen (1989, chap. 12) for more discussion. Similar objections apply to other
attempts to salvage indifference. Thus, Jaynes (1983) argues that the distribution
must maximize entropy relative to the macroscopic constraints and be invariant
under scale changes. But a uniform distribution over one parameterization will not
be invariant to all scale changes; and there is no a priori way of saying what the
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The proponent of indifference may deny this (I return to it in the
next section), but should at least grant it intuitively odd to think
that symmetries based on what we know of a system rationally
constrains, a priori, what to predict about it.

I think that these two reasons derail the use of indifference for
assigning probabilities in physics. Even if symmetries could yield
non-arbitrary, unambiguous probabilities (answering the first
problem), this will not suffice to say what the probabilities are
(given the second problem), let alone why our symmetric
inferences are successful. Consider a finite, discrete statespace,
such as for the six faces of a die. Here there is a unique uniform
distribution; yet even so, systems’ microstates may not actually be
distributed in this way. Hence we seem no more a priori justified
in using indifference-based probabilities rather than others. It is
true that symmetric probabilities and the standard measure both
seem perfectly natural. But this should not mislead us into
thinking that they are thereby a priori justified. If you reply that
symmetries rationally constrain our credences, providing some
initial evidence of the probabilities, then you should at least grant
that this is intuitively odd. In Section 4, I suggest an alternative.

3. Symmetric credence

Even if indifference cannot tell us the (objective) physical
probabilities of outcomes, it seems open to say that it constrains
rational belief, dictating what (subjective) credences one ought to
have. I think that this fails for similar reasons. We can see this by
looking at a particular epistemological view relying on indiffer-
ence. This will lead to a general conclusion about indifference and
rationality.

The view is Uniqueness.?® Given a body of evidence, there is a
unique set of (degrees of) belief a rational person can have.
Though an awfully strong view, the key idea is intuitive. If there
were more than one rationally permissible conclusion, given one’s
evidence, then any belief one winds up with must really be
irrational. If the total evidence fails to uniquely determine a
conclusion, then some other, non-evidential factor must have
played a role in one’s belief formation. But a belief based on
arbitrary factors cannot be rational. For such a belief is no more
likely to be true.

There must also be a uniquely rational set of beliefs one can
have before getting evidence. Otherwise, equally rational people
with the same evidence can come to different beliefs, by updating
their differing priors. (Granting a uniquely rational method of
updating, assumed here to be something like Bayesian conditio-
nalization.) The view needs a basis on which to say that some
priors are uniquely rational. A natural idea is indifference.
Uniform probabilities seem to avoid arbitrary preferences.?®

This faces the above two problems. The probabilities we assign
depend on how the possibilities are described, and there is no a
priori reason to think that one description is uniquely rational. If
so, then there is no uniquely rational, non-arbitrary way to assign
equal subjective probabilities, as Uniqueness requires. And even if
there were a unique rational description, why must we distribute

(footnote continued)

right scale changes are: Milne (1983). (See Uffink, 1996a, against the entropy
constraint.) Jaynes suggests that it comes from the geometry of the situation, but
neither will this be a priori: Marinoff (1994). (See Shackel, 2007, against Marinoff’s
attempt to salvage (limited uses of) indifference.)

28 See White (2005a).

29 It is hard to see what else would do. Conditionalizing on vague priors will
yield equally vague posteriors. Norton (2008b) further argues that the state of
ignorance described by indifference is incompatible with Bayesian updating, and
so is not even representable as a genuine probability distribution. See also
Arntzenius (2008).

credences uniformly? Empirical evidence will not say if some
priors are most reasonable, and there is no a priori reason to think
that uniform credences are more likely to yield truths about the
frequencies.

Now, in saying that it is reasonable to think these priors likely
to succeed, the view may just mean “likely according to the
correct prior distribution.” The problem is that, without measur-
ing a belief’s rationality by its likelihood of leading to empirical
frequencies, Uniqueness loses its edge over more permissive
rivals. The key idea is that if the evidence does not uniquely
determine your belief, then it must be based on arbitrary factors
and thus irrational—irrational because no more likely to be true.
Yet we have seen reasons to doubt that uniformity is more likely
to yield truth. More, we know that it can give the wrong results. In
quantum mechanics, the basic possibilities themselves are not
given by initial symmetries; whether an exchange of identical
particles yields a distinct state depends on the type of particle. In
other words, which factors are irrelevant or arbitrary is not
something that is a priori.

We do have a strong intuition in favor of symmetry constraints.
What should we infer is the probability that the number of
electrons in our universe is an exact multiple of 10,100?3°
Intuitively, it should be very low. Imagine all the possible numbers
of electrons there could be, and it seems extremely unlikely that
the actual number is a multiple of 10,100. Yet even this inference
is presupposing things that we cannot know a priori: that
electrons in our world do not come in multiples of 10,100; that
any number of electrons is as likely as any other, regardless of
what the rest of the world is like. Take a similar inference, familiar
from the indifference literature: a needle is unlikely to land on the
floor at any given angle with respect to the horizontal. Though
intuitive and seemingly a priori, this inference is based on
experience in a world like ours, with no force field or spatial
asymmetry picking out a preferred direction or location. I submit
that any case claiming to demonstrate symmetry as a rational
constraint on initial belief really smuggles in some such empirical
assumptions.3!

Here is the general conclusion. Intuitively, anyone with no
evidence, with no reason to expect one outcome over another,
should infer each possibility equally likely, on pain of irrationality.
However, any view claiming this as a rational constraint on priors
(versions of objective Bayesianism, the bygone Carnapian pro-
gram, Uniqueness) faces a dilemma.?2 Insofar as we link the
rationality of a belief to its likelihood of being true, we need not
rely on indifference: symmetric probabilities are a priori no more
likely to be truth-conducive. If we instead say that asymmetric
priors are nonetheless irrational, we give up the tie between a
belief’s rationality and its likelihood of yielding truth; and then it
is hard to see why we should care about being rational in the first
place. Of course, we need some initial credences to be able to start
taking in evidence. The point is not that we are unjustified in
choosing any priors at all, but that an initial, pre-evidential,
asymmetric set of priors is as good as any symmetric one. In the
absence of evidence, there is no more reason to use a symmetric
distribution rather than some other.3 So choose one, and update
your priors in the right way as the evidence comes in.

30 The example is from White (2005b).

31 Likewise for anthropic principles. There is no a priori reason we must use an
initial uniform distribution over possible worlds, from which to infer that our
world is unlikely.

32 The problem is for any view claiming that a priori symmetries constrain
rational credence. Other initial constraints on credences may escape these
difficulties.

33 Compare von Mises (1981, 75) who says (in arguing against subjectivism)
that, “if we know nothing about a thing, we cannot say anything about its
probability.”
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4. An empirical approach

I think that we can avoid the unwelcome consequences of a
priori symmetry constraints on our probability attributions.
Return to statistical mechanics. What tells us to use the uniform
distribution here?

Part of the answer is, simply, empirical input from the world:
the actual frequencies we use to confirm any probabilities in
physics. Using these probabilities, we make extremely successful
predictions about statistical mechanical phenomena.

This is only part of an answer, since the empirical frequencies
underdetermine the exact form of the distribution. Other,
relatively smooth, not-completely uniform distributions should
yield just as good predictions for statistical mechanics.>* Why the
uniform one?

I think that we have an answer to this, though we need to back
up a bit and work up to it. Recall that the basic possibilities in
statistical mechanics are given by the different combinations of
particle positions and momenta. The uniform distribution counts
each such combination as equally likely. You might wonder why
we use these coordinates to describe the possible states to begin
with. Are we not back at the problem of there being no unique,
non-arbitrary set of parameters over which to distribute prob-
abilities? Why uniformity with respect to these coordinates and
not others?

Set aside statistical mechanics for a moment and think of
the underlying particle dynamics. Ask a similar question: why
use the position and momentum coordinates to describe the
states of the particles?

Here we have an answer. These coordinates yield a simple
formulation of the classical dynamical laws, Hamilton’s equations.
Hamilton’s equations are formulated in terms of the generalized
position and momentum coordinates, called canonical coordinates.
Generalized coordinates are any set of independent parameters
that completely specify a system’s state. Different kinds of
generalized coordinates can be used in the very same form of
the laws. The generalized “positions” need not be ordinary
positions, for example; they can have dimensions of length
squared, or energy, or be a dimensionless quantity. What is
required is that the two sets of coordinates be related in the way
allowed by, or coded up in, the dynamical equations (as canonical
conjugates). The allowable sets of generalized coordinates are the
ones that preserve the equations of motion; the ones that are
invariant under canonical transformations.>>

Here is another important feature of the particle dynamics.
Formulating the equations in this way, with these coordinates,
requires a certain mathematical structure, possessed by the
theory’s statespace. This structure is given by the invariant
quantities of the dynamical laws under allowable sets of
coordinate transformations, in the same way that the structure
of a theory’s spacetime is given by invariant quantities under
allowable transformations. In Hamiltonian mechanics, this is
symplectic structure: the statespace of Hamiltonian mechanics is
a symplectic manifold. This is a manifold with a mathematical
object defined on it, a symplectic form®® (the invariant of the
equations), which encodes the equations of motion, and a scalar
function, the Hamiltonian, which encodes the dynamical features,
such as the energy and forces on the system. (The equations can

34 See Strevens (1998), Albert (2000), Goldstein (2001), Maudlin (2007), and
below.

35 The symplectic form and Hamiltonian H together determine a vector field,
Xy, on the phase space. Xy, in turn, defines a flow on the symplectic manifold, and
by Liouville’s theorem, Hamiltonian flows preserve the volume form: Hamiltonian
flows are canonical transformations. See Abraham and Marsden (1980, 3.3).

36 A symplectic form is a closed, nondegenerate, antisymmetric 2-form.

also be formulated without mentioning coordinates; this more
directly brings the intrinsic statespace structure to light.)

There are other versions of the dynamics, such as Lagrangian
mechanics, which use different sets of coordinates and different
statespaces. The Lagrangian formulation even uses two sets of
generalized coordinates (the generalized positions and their first
time derivatives, the generalized velocities). So we seem to be
back at our earlier question: why assume the canonical coordi-
nates of Hamiltonian mechanics?

This is a big question, the answer to which I only outline
here.?” The idea is this. The Hamiltonian formulation, given in
terms of the canonical coordinates and a symplectic statespace
structure, is, in an important sense, simpler. The sense of
simplicity that I have in mind is this: the least amount of
structure needed to formulate the dynamical laws. Modern
formulations of classical dynamics are defined on a statespace,
equipped with a certain structure. Different theories’ statespaces
can differ in that structure. Comparing statespace structures then
gives a measure of theories’ relative simplicity.

We can compare statespace structures in the same way we
compare mathematical structures: by how many “levels” of
structure are needed to define a space, starting from a set of
points. The levels are ordered according to which mathematical
objects must be presupposed to define others.?® In this sense, a
topological space has more structure than a “bare” set of points; a
topology adds a level of structure, indicating the open subsets. A
metric space has more structure than a topological space; a metric
adds a level of structure, giving distances between nearby points.
(A metric induces a topology; a topology does not give metrical
relations.) Note that, in general, symmetries mean less structure.
Given a set of points, another level of structure is needed to pick
out a preferred element, giving the space asymmetry. A Euclidean
plane with a preferred direction has more structure than a
Euclidean plane without one, for example; picking out a preferred
direction requires an additional mathematical object, an orienta-
tion.

In this sense of comparative structure, the Hamiltonian
statespace is simpler than the statespaces of other formulations.
Compare the Lagrangian and Hamiltonian statespaces. The
Hamiltonian statespace has a volume measure?; the Lagrangian
statespace has a distance measure. There is a clear sense in which
a space with metric structure has more structure than one with
just a volume element. Metric structure determines or presup-
poses a volume structure, but not the other way around (in the
same way that a metric presupposes a topology, but not the other
way around). Intuitively, knowing the distances between points in
a space gives you the volumes of regions, but the volumes will not
determine the distances.*® Metric structure is an additional level
of structure.

Why is “amount of structure” any measure of simplicity or
reason to prefer a theory? I do not have an argument for this,
other than to note that it is something we generally do in physics.
We generally infer the least structure needed to formulate the
fundamental dynamics—both the mathematical structure used to
state the laws, and the physical structure of a world described by
those laws. In particular, we infer symmetries in the world from
mathematical symmetries, or invariances, in the dynamics. This is

37 See North (2009a, 2009b) for detailed discussion of the mathematical
structures required by different formulations of the classical dynamics, including
the Newtonian one.

38 Compare Burke (1985, 37) and Isham (2003). See Sklar (1974, chap. II).

39 The symplectic form determines a volume form: Arnol'd (1989, 206).
Though note that a symplectic form is different from, and stronger than, a generic
volume form.

40 See Schutz (1980, chap. 4).
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clear in the case of spacetime symmetries. From time-translation
invariance of the laws, we infer that time has no preferred
temporal location. From Lorentz invariance, we infer that space-
time has no absolute simultaneity structure. If the dynamical laws
do not require some structure, if they are invariant under
transformations that alter the structure, we infer that there is
no such structure in the world according to the theory. The
inference is not conclusive; we cannot be certain that the minimal
structure required by the dynamics is correct. Yet physics has
done well by this methodological principle. It seems a reasonable
guide to when we have inferred the world’s structure correctly.*!

You may balk at using this principle for statespace, even if you
agree with its use for spacetime. To the extent that we wish to
minimize structure, we want to minimize structure in the world.
And a theory’s statespace seems instrumental, a formal tool; not
something about the world. Minimizing statespace structure then
should not matter to the physics.

[ disagree. A theory’s statespace does tell us about the world. It
may do so directly, because the statespace is part of the ontology,
as the substantivalist says that spacetime is part of the ontology.
Or it may do so less directly, telling us about the world in the way
that the laws do; for the statespace is the abstract geometric
formulation of the laws. Regardless of your view of its metaphy-
sics, a theory’s statespace is part of its genuine content. It is an
essential component of our best geometric formulations of the
physics. Other things equal, we prefer the simplest formulation of
a theory. And less statespace structure means a simpler formula-
tion, requiring less mathematical structure and ascribing less
structure to the world. (In the same way that less spacetime
structure means a simpler formulation, regardless of your views
on the metaphysics of spacetime.)

Spot me the inference to the minimal structure required by a
theory’s dynamical laws. Where does this get us in statistical
mechanics?

I claim that this inference lies behind the standard distribution
of statistical mechanics. The phase space of statistical mechanics
is parameterized by the coordinates we use to describe the states
of the particles. Phase space then inherits the mathematical
structure of the classical dynamical statespace. This structure, we
have seen, includes a volume element: there is a natural volume
measure induced by the canonical coordinates.

A probability distribution that is uniform over the statistical
mechanical phase space, with respect to the natural volume
measure of the dynamics, is then strikingly simple. It requires no
mathematical structure beyond what is needed to formulate the
dynamics. A non-uniform distribution, or a distribution with
respect to a different measure, would require further structure, a
kind of preferred-point or -region in phase space structure—just
as a Euclidean plane with a preferred direction requires an
orientation. A further mathematical object would be needed to
pick out the points to be weighted more heavily, when no such
preference is given them by the dynamics. Since we do not need
any additional structure for the dynamics of the particles in these
systems, and since we can formulate a successful statistical
mechanics without it, we should infer the uniform distribution as
the one that accurately reflects the underlying nature of the world,
just as we generally infer that the simplest formulation of the
dynamics reflects the world. No more structure is needed to
formulate the theory, and no more structure is needed in a world
governed by the theory.

41 Compare Sklar (1974, 48-49). Earman (1989, 46) considers this a condition
of adequacy on dynamical theories. There remains the big question of simplicity
considerations in theory choice. To the extent that we think invariances in the
dynamics are not arbitrary but track features of the world, we can sidestep this:
see K. S. Friedman (1976).

This gives us two reasons for the uniform probability distribution,
with respect to the standard measure, in statistical mechanics. (1) It
yields empirically successful predictions. (2) It is uniform over the
structure needed for the dynamics—uniform with respect to the
natural volume inherited from the dynamics—and so requires no
structure beyond what is “already there” for the dynamics. It is the
simplest, most natural, most mildly constrained distribution we could
use, given the dynamics of the particles in these systems.*? Although
we must ultimately justify the distribution by its empirical success, as
the case against indifference shows, uniformity over this statespace
structure is a further reason for it. From among the candidate
distributions yielding correct predictions, the uniform one is simplest,
relative to the structure of the dynamics. Although other, relatively
smooth distributions should be as successful in statistical mechanics,
this is the simplest and most natural we could use.*>

What if uniform distributions over differently coordinatized
statespaces, for different formulations of the laws, disagree on the
probabilities of microstates?** This need not worry us here. It is
reasonable to suspect, given the above, that the Hamiltonian
formulation is simplest, and thus the one we should infer.
However, if there do turn out to be different formulations that
are equally simple, in the above sense, then it is reasonable to
suspect that uniform probabilities over the different statespaces
will not yield differences at the level of statistical mechanical
predictions, for the reasons that any sufficiently smooth distribu-
tion should work for statistical mechanics.*’

You might object that no more structure need be added to the
theory for a non-uniform distribution. You might think that we
need not add structure picking out which points are preferred; we
need only say that there are some regions whose probabilities
differ from the standard uniform ones.*® But in order to assign
non-uniform probabilities in a way that is empirically adequate, in
a way that is empirically confirmable by the evidence we have for
ordinary statistical mechanics, we will have to pick out the
preferred regions or points, in the same way that we would
have to add mathematical structure to pick out a preferred
direction in a Euclidean plane. A physical theory which says
that some microstate-regions are preferred, without also saying
which ones—a theory which says there is a region with twice
the probability of another, say, without saying which region
this is—will not yield predictions resembling those confirmed
by statistical mechanics as we know it. In order to posit a

42 The same considerations support the view of Diirr, Goldstein, and Zanghi
(199243, 1992b), Maudlin (2007), which requires less structure than a probability
distribution. (Volchan, 2007 is a different version of the view. Albert, 2008 is a
reply.) Consider the above as an argument for the uniform distribution, on the
assumption we need a probability distribution; if not, these considerations
preference their view. The above also supports the proposal of Albert (2000, chap.
7) that if GRW quantum mechanics is true, we would have an even simpler
account, eliminating statistical mechanical probabilities altogether. (Price, 2002a,
2002b, disagrees; see North, 2002, for a reply.)

43 All the more so if we need probabilities in somewhere our physics, as
argued by Albert (2008) and Ismael (2009). Note the above is a version of Sklar’s
(1973, 212) “simple justification,” with an added ingredient. Start by guessing at
probability distributions, and see whether they make the right predictions. If one
does, then we have chosen correctly; if not, we keep guessing until we find the one
that does. The additional ingredient here, naturalness relative to the dynamics,
selects a distribution from those getting the statistical facts right.

44 As should be the case for Hamiltonian and Lagrangian mechanics. The
Hamiltonian coordinates are related to the Lagrangian ones by a (non-measure
preserving) Legendre transform. So a uniform distribution over the Hamiltonian
statespace, with respect to the Lebesgue volume element in its coordinates, need
not be uniform over the Lagrangian statespace, with respect to its volume element.
It has also been shown that there are alternative equivalent Hamiltonian
descriptions, not related by a measure preserving transformation to the canonical
ones (Ercolessi, Morandi, & Marmo, 2002); though these, too, seem to presuppose
a symplectic structure. I thank Branden Fitelson for discussion and references.

45 Footnote 34.

46 | thank Ted Sider for this question.
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non-uniform distribution, either we will have to add structure
picking out the preferred regions, or end up with a theory whose
confirmability by the empirical evidence is questionable. Either
way, general scientific grounds tell against doing so.

Remember the two big problems for indifference. There is no a
priori way of picking out a set of parameters with which to
characterize the possibilities (and statespace structure); and even
if there were, there is no a priori reason to distribute probabilities
uniformly over the possibilities. The proposal here avoids both
problems. The empirically confirmed dynamics says which
coordinates to use to characterize the possibilities.*” (Just as
empirical evidence says what count as distinct possibilities for
quantum mechanical particles.) And a general methodological
principle tells us to use a uniform distribution over these
possibilities.*® Note the emphasis on empirical considerations.
The structure principle comes into play once we have a range of
empirically confirmed distributions. If empirical evidence were to
disconfirm the uniform one, then simplicity considerations would
pick out some other from among the remaining empirically
adequate candidates. Note also that the methodological principle
is itself justified by a kind of empirical, if inductive, argument: it
has generally yielded successful theories for our world.

To be clear, there is no a priori reason that this must be the
right probability distribution to use. Nor is it forced on us by the
dynamics; I do not claim that it is uniquely natural in being
derivable from the dynamics.*® I do claim that it is reasonable,
even so, given empirical evidence of its success and its naturalness
relative to the dynamics. The justification bottoms out in the
contingent fact that our world seems to be parsimonious in this
way. Its theory of many-particle systems is strikingly simple,
including the dynamics of individual particles, a natural prob-
ability assumption, and no further structure.’® If you go on to ask
why we should live in such a simple world, I do not have more to
say. Our world did not have to be one for which a natural
probability assumption is the one to use for making predictions
about its sub-systems. Our world happens to exhibit this
simplicity; there is no further explanation of this fact.

Thus, whereas many people think we must prove that this is
the only invariant probability measure—the only one that
is “carried along” or preserved by the dynamics—on my view
this is a feature of the distribution that is chosen for other

47 Ismael (2009) argues that any such parameterization must be empirically

grounded.
48 This is similar to Strevens (1998, 241): “It seems to be the case that, for
whatever reason, our standard variables are smoothly distributed ... . Let me

stress that [ am not proposing that our ‘standard’ variables have any special logical
status. They are simply the variables with which we prefer to operate, and which
are, conveniently for us, for the most part smoothly distributed.” My view differs in
proposing that the distribution is not just smooth but uniform over dynamical
coordinates, and that there is a reason for this: statistical evidence plus a
successful methodological principle. See Section 5.

49 In particular, I do not claim to derive the probabilities from the dynamics in
the way sought by ergodic approaches (footnote 6). There the goal is to locate, as
Sklar (1973) puts it, more than a reason to think that the distribution gives the
right results, but a reason to think that it should give the right results. On my view,
one distribution is natural, but not by derivation from the dynamics. See Ismael
(2009) for general argument that the probabilities needed in physics are over and
above the dynamics. Another worry is that it begs the question to “assume the
actual microstate is always in the set of typical points” (Callender, 1999, 371),
positing the probabilities to explain them by means of their success. But we justify
these probabilities in the same way we do any fundamental physical posit, by
accounting for the phenomena in a simple way. We do not need a further reason to
eliminate such posits altogether, as argued for in a different way in Callender
(2004).

50 Plus (at least) one more component. In my view, the theory also needs a
statement about initial low entropy in order to ground thermodynamic and other
macroscopic asymmetries. Which additional component, if any, we need to ground
thermodynamics is a large separate question.

empirical reasons.®® It could have been that the probabilities
changed with time (say, the probability of microstates for gases’
remaining in corners of their containers increased every year). Or
it could have been that no useful probability distribution at all
was to be had.>? Likewise, the distribution need not have been
uniform. There are other worlds, with similar dynamics, in which
a non-uniform distribution is successful (worlds where nature
favors compressed gases, say).”> As far as we can tell, this is not
our world. Consider that if we did observe a reliable preference for
gases to stay clumped up in corners of their containers, then we
would posit different probabilities, perhaps altering the dynamics
and spacetime symmetries to reflect that preference. (As we
might do if we reliably observed systems evolving toward certain
spatial or temporal locations.)>* We think that such preferences
would show up in the dynamical behavior of ordinary systems.
Since we do not observe these preferences, we reasonably infer
that there are none—that we have posited the correct dynamics
and probabilities.

There is a sense, though, in which this is the only measure
that “respects the structure” of the dynamics. Guszcza (2000,
Appendix II) proves that there is a unique measure on a
symplectic manifold that is preserved by canonical transforma-
tions, the transformations preserving the Hamiltonian equations.
(He proves that there is a unique (up to multiplicative constant)
measure on a symplectic manifold that is finite on compact sets
and preserved under all local canonical transformations.) And he
shows that it is the measure associated with the standard volume
element given by the symplectic form.>> This gives a precise sense
in which the standard measure is simplest relative to the
statespace structure; it is the one preserved by the same
transformations that preserve the dynamical laws. The invariant
quantities of the laws dictate both the statespace structure and

51 The natural volume induced by the canonical coordinates is preserved by
the dynamics: Arnol'd (1989, 204-207). Whether a non-invariant distribution
could be said to assign genuine probabilities is another question. Lebowitz
expresses a common view when he says that, “Without this invariance the
connection between phase space volume and probability would be impossible or
at least very problematic” (1999b, 356).

52 Invariance, that is, is not an a priori constraint. Whether it holds depends on
the theory; see Albert (2000, n. 8, 80). Branden Fitelson suggests this is the only
distribution satisfying certain reasonable constraints, among them invariance. But
I prefer not to impose such initial constraints, for it seems a different distribution
could have been correct.

53 Whether we would posit asymmetries in the spacetime, dynamics, or
probabilities is a separate issue. The point is that we would infer some such
asymmetries. Cf. Callender (2000).

54 Compare the view of Strevens (1998) that our probability inferences stem
from observed symmetries plus knowledge of the laws, including which features
the laws do, and which they do not, care about. The laws care about the shape of
the die but not the number of dots painted on a side, for example; or so we
(defeasibly) infer from the empirical evidence. Similarly, von Mises (1981, 73) says
that, “no concrete case can be handled merely by means of an a priori knowledge
of equally likely cases. It is always necessary to use more or less general results
derived from observation and experience in order to determine which properties
of the apparatus that we are using may influence the course of the experiments,
and which properties are irrelevant from this point of view.”

551 thank David Malament for the reference. Following Guszcza (2000,
Appendix II), for 2n-dimensional phase space I', a canonical transformation is a
diffeomorphism g : I'— I that preserves the symplectic form, o. A local canonical
transformation is a diffeomorphism g : A— B, for some neighborhoods A, B c I' that
preserves . Guszcza proves that the natural measure associated with the volume
element given by w on I' is the unique measure finite on compact sets and
preserved by the class of local canonical transformations of I'. The result follows
from Darboux’s theorem and the fact that Lebesgue measure is the unique
translation-invariant Borel measure on R?". Darboux’s theorem tells us that every
pair of symplectic manifolds is locally isomorphic: within the neighborhood of
every point, there are local (canonical) coordinates such that the symplectic form
takes the canonical form. Two real symplectic manifolds (same dimension and
signature) are locally identical: they can be mapped onto each other so that their
symplectic structures correspond. See Arnol’d (1989, 230), Berndt (2001, 2.2), and
da Silva (2001, 8.1).
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the natural measure on it. Again, it is a contingent feature of our
world that the right measure to use is natural in this way.

These considerations are independent of your view on the
nature of the probabilities. If you take them to be epistemic or
merely instrumental, then the reason we use uniform probabil-
ities for the purpose of statistical mechanics is that we generally
choose the simplest formulation of a theory, all else equal. |
happen to think that a realist and objective understanding of the
probabilities is more natural; so that when we infer this
distribution, we are inferring something about the world and its
actual distribution of microstates.>® [ think that this yields a
simpler, more unified theory, for reasons I expand on in Section 5.
Yet either way, this distribution is simplest, all things considered,;
and so, by our methodological rule, is the one we ought to infer,
unless we were to get evidence otherwise.

Nor do these considerations depend on your view of laws of
nature. The uniform distribution, if not a bona fide law, is an
empirical generalization with many law-like features (it supports
counterfactuals, figures in successful empirical explanations and
predictions, and so on). If you have a best-system account of such
generalizations, then posit this distribution on the grounds that it
yields the simplest, most informative summary of the facts. If you
are a non-reductionist about laws, then this is still the distribution
to posit, on general methodological grounds. The non-reductionist
will allow that we can be wrong in thinking these the right
probabilities (even if we knew all the facts in the entire history of
the world, say), yet maintain we are empirically justified in
positing them.

You may accuse me of advocating a version of an indifference
principle, something like: infer a distribution that is indifferent
over the structure required by the dynamics. Call it an indifference
principle if you like. To my mind, it is a far enough cry from the
traditional idea that it is undeserving of the name. Unlike
traditional indifference, the symmetry considerations here are
not epistemic, a priori, or arbitrary; the (empirically confirmed)
dynamics picks out the parameters over which to distribute
probabilities uniformly. To the extent that there is any a priori
element here, it is only to the extent that we take our general
criteria of theory choice—simplicity, explanatory power, and the
like—to be a priori to a degree; but only to that extent. Without
taking a stand on the epistemic nature of those criteria, I claim
that the current account is no more a priori than those. The
justification is ultimately empirical, coming from the evidence we
have for statistical mechanics and the particle dynamics,
combined with the methodological principle that we do not infer
more structure to the world and its physics than what the
fundamental laws indicate there is.>’

5. From statistical mechanics to coin tosses

Even if you follow me this far, you might wonder about the
questions we started with. What about our usual inferences from
symmetries to probabilities? What does statistical mechanics
have to do with those?

[ want to suggest that even though it may not seem like
it—even though statistical mechanics seems to have nothing to do
with die throws and coin tosses and the like—once we have the
statistical mechanical distribution in place, it can explain the
success of our everyday inferences from symmetries to probabil-
ities. These inferences succeed because we live in a world of which
statistical mechanics is true.

56 Ismael (2009) argues that the probabilities must be so construed.
57 Hence this does not rely on the type of Probability Principle dismissed by
Davey (2008).

Why think this is at all plausible? Let us look at a simple case
of a coin toss. Before tossing a coin, we infer that each side is
equally likely to come up. Repeated tosses confirm this prediction.
Why does our initial inference succeed?

For simplicity, imagine that I am holding a coin balanced
vertically on a table. The “toss” will consist in my letting go of the
coin and its falling to the left (to land heads) or to the right (tails).
In what follows, assume that the coin is governed by Hamiltonian
dynamics.>®

Think of the phase space of this coin. Consider the region
corresponding to its initial macrostate. This region comprises the
points representing microstates compatible with the coin’s
currently being in this location on the table, with its having this
particular size and average temperature, with my hand’s exerting
this particular pressure on the coin, and any of the coin’s other
macroscopic features.

Out of all these microstates, think of the different possible
combinations of positions and momenta for the particles that will
result in a heads as opposed to a tails outcome when I let go of the
coin. That is, think of all the different possible ways the coin’s
particles could be arranged—with different combinations of initial
positions and momenta—so that the coin will land heads; and
think of all the different possible ways the particles could be
arranged so that the coin will land tails. Think in particular of the
different possible combinations of momenta. In the idealized case
we are setting up here, slight differences in the momentum of
even a single particle will determine that the coin falls to the left
as opposed to the right when I let go of it. (The classical dynamics
is deterministic.>®) Finally, place a uniform probability distribu-
tion over this phase space region—the region corresponding to
the initial macrostate of the coin, the region containing the
points representing microstates compatible with the coin’s initial
macrostate—just as statistical mechanics would tell us to do.
(Ignoring, for now, the worry that the coin is not a type of system
addressed by ordinary statistical mechanics. I return to this.)

You may be thinking that we must settle deep controversies in
the foundations of statistical mechanics before we can continue.
First, there is debate over whether the distribution is uniform over
these microstates or a (proper) subset of them, viz. those that have
evolved from lower entropy past states (even back to the initial
state of the universe).®° Second, there is debate over whether the
initial distribution is taken over the phase space of the coin or the
entire world; and you might think that the latter cannot be
applied to the world’s various sub-systems.®! Third, you may
worry more generally that an initial distribution will not tell us
the probabilistic behavior of an ordinary system, whose state is
confined to an energy hypersurface. Any lower-dimensional space
gets zero measure on the standard volume measure over the
whole of a system’s phase space.®?

We can leave these issues aside here. For a uniform distribu-
tion taken over the initial macrostate of the coin should yield the

58 I argued above that we should infer Hamiltonian mechanics. But notice that
the right coordinates are going to be something like canonical coordinates. The
classical equations are second order, requiring two sets of coordinates to
characterize systems’ states; in particular, one set of coordinates is the derivative
of, or tangent to, the other. One set effectively characterizes the particles’ relative
locations, the other the “directions” or rates of change of their motions. That is
what we will need here.

59 Setting aside the cases of indeterminism: Earman (1986), Malament (2008)
and Norton (2008a).

50 As in the past hypothesis: Albert (2000). Earman (2006) argues against this
proposal.

51 Winsberg (2004a) argues that this requires a further posit, which we do not
think is true; cf. Earman (2006, 420). A similar criticism is in Reichenbach’s
“branching systems” account (Sklar, 1993, 8.11I); Winsberg (2004b) is an updated
version of that idea.

62 As in Frigg (2008b).
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same probabilistic predictions as one that is conditionalized on
the past, of the coin or world.®> A probability distribution taken
over the macrostate of the world at some time, combined with the
deterministic dynamics, will induce a probability distribu-
tion over the world’s possible microstates at any other time;
conditionalize the initial distribution on the macrostate at the
other time. Since any microstate of the world includes a
microstate for any sub-system, this procedure will yield prob-
abilities for the possible microstates of any sub-system at any
time. Importantly, this will assign relatively uniform such
probabilities. A standard assumption in statistical mechanics
makes it plausible that, for an ordinary macroscopic system, a
uniform distribution taken over the entirety of (a bounded region
in) its phase space will be relatively uniform throughout just
about any sub-region.®* So that when we conditionalize the initial
distribution on the sub-region (and renormalize), we get another
distribution that is relatively uniform. Whatever your stance on
these issues, we can safely assume a relatively uniform distribu-
tion over a system’s initial macrostate. (Intuitively, place a
uniform distribution over a region in a higher-dimensional
space—say, a two-dimensional plane—throughout which the
“abnormal,” low-probability regions are scattered randomly in
tiny clumps. Project this distribution onto just about any region in
a (one-dimensional) sub-space—that is, any region that is not as
small and scattered as the abnormal regions themselves—and
renormalize. In other words, take a uniform distribution, on the
standard measure, over the points that are in both the plane and
the one-dimensional sub-space. Plausibly, this yields another
uniform distribution, with similar probabilistic predictions for the
future, such as extremely low probability for the abnormal
microstates.%® Either take a uniform distribution over the current
macrostate region of a system or over the microstates within this
region that came from past lower entropy, and we should get a
relatively uniform distribution.®®)

Statistical mechanics says that, compatible with any given
macrostate, including the initial macrostate of our coin, there are
just as many microstates in which a given particle in the system is

63 That is, the same future predictions. It is in order to get correct inferences for
the past that Albert (2000) argues for conditionalizing the usual distribution on
initial low entropy. Another worry is that it is not true, in general, that the right
distribution is uniform over a given macrostate: not all microstates relative to a set
of macroscopic features are uniformly distributed. In reply, we can restrict the
macroscopic features we conditionalize on (to the usual thermodynamic ones,
say), or adopt Albert’s view that once we include any relevant features, the uniform
one (conditional on the past) will be correct.

64 See, for example, Lebowitz (1993a, 1993b, 1993c, 1999b), Sklar (1993, 206),
Pathria (1996, 20), and Albert (2000). Thus, let M be a system’s macrostate, I’ its
phase space, I'y the region corresponding to M, M, the initial and M, the later
macrostate, and 'y, the region of I'y;, that came from I'y, (the microstates in
I'yp on trajectories coming via I'yg). Then “for systems with realistic interactions
the domain I'y,, will be so convoluted that it will be ‘essentially dense’ in I'yy,”
(Lebowitz, 1993a, 10); “the domain Iy, will be so convoluted as to appear
uniformly smeared out in I'y;"” (Lebowitz, 1999b, S349). Indeed, this is part of
what the arguments of Boltzmann and Gibbs, for grounding the second law of
thermodynamics in statistical mechanics, plausibly show. For skepticism about its
plausibility, see Frigg (2008b, 130-133).

5 Indeed, it is because this yields similar probabilities that Albert, for one,
argues that an initial universal distribution should ground our predictions of
entropy increase to the future of individual systems, at the same time yielding
correct inferences about their pasts. See the quotation from Callender in footnote
18; compare Figure 3.15 in Albert (2000). But see Frigg (2008b, 130-133) for
skepticism about this scattering assumption.

6 There is a standard way of restricting the Liouville measure to a sub-space
like the energy hypersurface, with the volume of the surface the normalizing
factor: Kac (1959, 63), Lebowitz (1993c), and Pathria (1996, 56). You might wonder
whether the simplicity considerations picking out the standard measure also favor
the restricted one; the latter standardly depends on the Hamiltonian. Yet all we
need is that the distribution is initially uniform, and that it yields an
approximately uniform distribution over the energy hypersurface—a big, but
relatively standard, assumption: footnote 18.

heading to the left as there are microstates in which the particle is
heading to the right. There is a one-one mapping between
microstates and their time reverses—the microstates with the
time-reversed particle velocities—and for any microstate that
realizes a given macrostate, so will its time reverse. A bit more
precisely, according to statistical mechanics, the phase space
volume of each set of such microstates, out of the total volume of
the region representing the system’s initial macrostate, will be the
same.

Keeping in mind that the momenta of the individual
particles determine how the coin will land, the above means
that, according to statistical mechanics, there are just as many
ways for those initial momenta to be arranged, consistent with
the initial macrostate, so that the coin will wind up tilting to the
left when I let go of it, as there are ways for the initial momenta
to be arranged so that the coin will tilt to the right. That is, half
the phase space region corresponding to the coin’s initial
macrostate is taken up by microstates such that, if the coin
starts out in one of these, it will (deterministically) fall to the left;
half the phase space region corresponding to the coin’s initial
macrostate is taken up by microstates such that if the coin
starts out in one of those, it will (deterministically) fall to the
right. The uniform distribution over the phase space region
representing the coin’s initial macrostate then says that any such
“left-directed” microstate is equally probable as any such “right-
directed” one.

In other words, out of our two possible outcomes—falling left
or falling right; landing heads or landing tails—statistical
mechanics says that each one is equally likely. Statistical
mechanics counts the differences among possible micro states in
such a way that they add up to an equal probability for each of the
two possible macro scopic outcomes. Similarly, within a bunch of
similar coin tosses, statistical mechanics says that their micro-
states will be distributed with about half the tosses starting out in
“left-directed” microstates and half in “right-directed” ones. At
the macroscopic level, this yields the prediction that approxi-
mately half the tosses will land heads and half will land tails, or
that a given coin toss has a 1 probability of landing heads.®’

Here, finally, is our payoff: that was our initial inference! We
infer, on the basis of the macroscopic information we start out
with, before observing any tosses, that the coin has a { probability
of landing heads and a 1 probability of landing tails. We likewise
infer that in a long sequence of tosses, we will get heads about half
the time. This suggests that the reason for the success of our initial
inference is the truth of the statistical mechanical distribution. It
suggests that our ordinary inferences from symmetries to
probabilities succeed when the symmetries we observe match
the symmetries in the statistical mechanical distribution. For
when there is this correspondence between the macroscopic
symmetries—between a heads and a tails outcome, say—and the
symmetries in the distribution of fundamental microstates—as
among the different combinations of particle momenta—a uni-
form distribution over the different possible fundamental states
will yield a uniform distribution over the different possible
macroscopic outcomes.

Fig. 1 makes this intuitive.’® Each point represents a different
possible microstate for the coin, characterized by the initial height
h of its center of mass above the table and the angle 6 between its

57 That is, in the limit of increasingly many tosses, there is a high probability of
heads about half the time; the set of microstates with this limiting frequency has
measure one.

68 Keller (1986) gives a similar argument for coin tosses without collision. See
also the example of the Galton board in Maudlin (2007), although Maudlin uses it
to argue that we do not need the full structure of a probability distribution
(footnote 42).
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h(cm)

0(deg)

Fig.1. From Kechen (1990a, 1990b). Dependence of final outcome on initial state of
a coin released from rest above a table at height h. 0 is the angle between the coin
and table surfaces; 0 =0 when the coin is parallel to the tabletop with heads up.
Blackened regions represent states leading to heads.

surface and that of the table (where 0 = 0 when the coin is parallel
to the tabletop with heads up). The coin is released from rest.%®
The figure shows the different possible states of the coin and
shades the various regions according to their outcomes; regions
shaded black represent microstates resulting in heads. Now place
a uniform probability distribution (density), on the standard
measure, over the points in the figure. This distribution will say
that about half the initial microstates lead to heads (the black
regions) and half to tails (white), or that the coin has a 1
probability of landing heads.”® Indeed, imagine taking a uniform
distribution over just about any reasonably shaped sub-region of
the figure, and we will still get a probability of approximately 1
heads. In other words, plausibly, this distribution should assign
probability 1 to a heads outcome even if we were to conditionalize
on further features of the coin toss—that my hand can release it
within a certain narrow range of velocities, for example.”!

This is not to say that we must know what the statistical
mechanical probabilities are. Our everyday inferences succeed
even though we do not generally know about statistical
mechanics. Rather, these inferences are successful because, and
when, the observed symmetries align with the symmetries in the
distribution of dynamical coordinates. The reason we make these
inferences from symmetries to probabilities is our past experi-
ence, and this experience has been in a statistical mechanical
world. We have learned from experience that systems’ microstates
are distributed in the way that the statistical mechanical
distribution says they are.”?

59 Suppose that immediately after release, the velocity of the coin’s center of
mass is vertical and the angular velocity is parallel to the tabletop. These features
will be preserved throughout the motion, since the forces on the coin (from gravity
and the table) act vertically. Assume a uniform mass distribution in the coin, a
smooth table, and negligible air resistance. While the coin is falling, its motion is
free fall plus rotation at a constant angular velocity. The outcome, a function of the
height of release, is then caused by the collision(s) of the coin with the table. See
Kechen (1990a, 1990b) for discussion.

70 Where above I argued that uniformly distributed momenta should yield a 1
probability of heads, here we have a similar argument from uniformly distributed
positions.

71 Compare Kechen: “Moreover, it may also be conjectured that H [the set of
initial microstates leading to heads] is distributed uniformly within any region in
phase space where the energy is large enough, and within any fixed region when
coefficient e [of restitution] is sufficiently close to 1" (1990b, 1895).

72 Compare von Mises (1981, 76): “most people, asked about the position of
the centre of gravity of an unknown cube, will answer ‘It probably lies at the
centre’. This answer is due, not to their lack of knowledge concerning this

You might worry that something must be missing from the
explanation of the coin toss. Imagine a machine with access to
the exact initial microstate of the coin. Suppose the machine, on
the basis of this information, can reliably toss the coin so that it
always lands heads. Presumably, the machine can do this without
any alteration to the dynamics.”® This is a general point about
statistical mechanical systems. A machine, or a Maxwellian
demon, with knowledge of systems’ microstates and the ability
to act on this knowledge, could reliably cause systems to behave
in anti-thermodynamic ways. Again, I take it that the job is to
account for the use of these probabilities in explaining various
macroscopic generalizations, to the extent that those general-
izations hold. And we know that if we were Maxwellian demons,
then the generalizations that we are trying to explain need not
hold. It is not that we need an additional component in the
explanation, in other words. It is that the explanation (and
explanandum) hold only given that we do not have the epistemic
and manipulative capacities of a Maxwellian demon. Otherwise,
all bets are off.

The example of the coin is admittedly idealized. How the coin
lands will depend on many other factors—the velocities of the
surrounding air molecules, the angular velocities of the particles
in my hand, and more besides. This should raise a skeptical
eyebrow or two. Why think this procedure should yield the right
probabilities once we include these real-life complications? The
coin is not even a type of system ordinarily studied in statistical
mechanics. Ordinary statistical mechanics talks about boxes of gas
and cubes of ice, not dice and coins. Why think this should work
for everyday systems like these?”*

Eminently reasonable concerns. Yet I submit this as a plausible
conjecture even so. As far as we can tell, there is no reason to think
that statistical mechanics should not work for the particles in a
coin, given its success for the particles in a gas. No difference in
kind between the particles in these systems as far as the
underlying dynamics is concerned; hence no difference in kind
as far as the statistical mechanical predictions are concerned. And
when we use the statistical mechanical probabilities to make
predictions for something like a coin toss, we plausibly get the
right results. It remains to show rigorously that statistical
mechanics can be applied this generally, but it very well might.
The empirical success of statistical mechanics suggests that the
microstates of macroscopic systems are actually distributed in the
way the standard distribution says—the microstates, that is, of all
classical many-particle systems, boxes of gas and coins alike.””

(footnote continued)
particular cube, but to their actual knowledge of a great number of other cubes,
which were all more or less ‘true’.”

73 1 thank Jos Uffink for this question.

74 Leeds (2003) is skeptical of any statistical mechanics that tries to carry the
theory beyond the types of systems studied in ordinary research. A similar
challenge could come from the view of Cartwright (1999) that we have no reason
to infer that the laws of physics hold for ordinary systems, even granting their
truth for systems we design in the laboratory. In reply, I think that the success (and
truth) of the laws in systems we have studied indicates their general success
(truth), until evidence shows otherwise. Another challenge comes from the view of
Callender (2008) that statistical mechanics is a special science; see North
(forthcoming) for a reply.

75 Here is one textbook: “Statistical mechanics is a formalism which aims at
explaining the physical properties of matter in bulk on the basis of the dynamical
behavior of its microscopic constituents. The scope of the formalism is almost as
unlimited as the very range of the natural phenomena, for in principle it is
applicable to matter in any state whatsoever. It has, in fact, been applied, with
considerable success, to the study of matter in the solid state, liquid state or the
gaseous state, matter composed of several phases and/or several components,
matter under extreme conditions of density and temperature, matter in
equilibrium with radiation (as, for example, in astrophysics), matter in the form
of a biological specimen, etc.” (Pathria, 1996, 1); original italics. Against such
optimism, Callender cautions, “Outside of thermodynamics there is simply not a
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Given the success of statistical mechanics for these other types of
macroscopic systems, assumed to be made up of the same kinds of
particles, we have good reason to think the procedure should work
even for a coin. Surprisingly, yet plausibly, the same distribution
telling us that entropy increase is extremely likely in isolated
thermodynamic systems also tells us the probabilities for the
outcomes of coin flips. A bold hypothesis, to be sure, but one that
is plausible all the same. A hypothesis that we should accept
unless, or until, we find evidence to the contrary.”®

Another view that may strike you as more plausible is that of
Strevens (1998, 2003, 2005). Strevens also argues that underlying
mechanical considerations help explain the success of our
macroscopic probability inferences. He makes use of physical
symmetries in the mechanism of a set-up and what he calls the
‘microconstancy’ of initial condition variables (roughly, that their
values are macroperiodic). Yet his view gets by with the lesser
constraint of a reasonably smooth initial distribution, not a
uniform one. My proposal is more ambitious and correspondingly
more prone to failure. Still, it may be correct; and if it is, it would
yield a more unified overall account. According to it, we in fact
have a wide variety of evidence for these probabilities—not only
the different sorts of evidence we have for both statistical
mechanics and the underlying dynamics, but also our everyday
practice of die throws and coin tosses. The statistical behaviors
of ordinary systems provide independent confirmation of the
probabilities used in statistical mechanics. If successful, this
account would explain more and in a unified way—including the
success of Strevens’ own microconstancy condition. Since all
things equal, we prefer theories that explain more on the basis of
less, it seems worthwhile to treat it as a working hypothesis,
unless, or until, we find evidence to the contrary.

You might worry that this requires understanding the
statistical mechanical probabilities as objective, as corresponding
to features in the world. I disagree. I do think that an objective
construal yields a better overall theory. For it lends itself to
thinking of these probabilities as representing the actual statis-
tical distribution of microstates; which we can then use to explain
the success of indifference principles, when such principles
succeed.”” (In the same way that the scientific realist argues that
realism best accounts for the success of our theories.) Yet the
reasons for the uniform distribution remain whatever your
metaphysics of its probabilities. At worst, take the above as
suggesting why we use the uniform distribution, however we
construe its probabilities. At best, take it as further argument that
we treat these probabilities objectively, on the grounds that this
view yields a deeper, more unified overall theory.

Finally, there is the question of how much the account will be
able to explain. Does statistical mechanics underlie all successful
uses of uniform probabilities? Do these dynamical considerations
suffice to pick out the “right” probabilities for any of the familiar
indifference principle cases (footnote 25)? I am not sure. I do
claim that this explains the use of uniform probabilities in

(footnote continued)

shred of evidence” that statistical mechanics underlies other, non-thermodynamic,
macroscopic regularities (Callender, 2008). Similar views are expressed in Leeds
(2003). In reply, note that statistical mechanics has been applied widely, with
continuing success. Where should we draw the line between thermodynamic and
other kinds of macroscopic systems for which statistical mechanics will cease to
work? At this point, we reach competing intuitions which I am unsure how to
adjudicate. The present paper attempts to push the optimist line, but this need not
convince the committed skeptic.

76 Since the distribution over initial conditions will, when added to the
deterministic dynamics, yield probabilistic predictions for every event in the
history of a system, we can go further in saying that we ought to accept this until
we find evidence to the contrary: such evidence would arguably amount to
disconfirmation of statistical mechanics itself.

77 Such as the restricted use of the principle given by Castell (1998).

statistical mechanics, and that this, in turn, explains the success of
uniform probabilities in things like coin tosses. The extent of the
account—can statistical mechanics explain all empirical statistical
generalizations, as Albert (2000, 2008) argues? Or only the
predictions of ordinary statistical mechanical systems, as Leeds
(2003) argues, albeit with the addition of systems like coins?—is
for further investigation. Consider the current paper a modest
attempt to nudge us closer to the “imperialist” view, as Callender
(2008) calls it, of statistical mechanics as underlying many, if not
all, of our probabilistic inferences about the world.

6. Conclusion

The statistical mechanical distribution at once explains the
success of our everyday inferences from symmetries to probabil-
ities, and justifies our symmetric probability assignments. We do
not rely on an a priori principle to successfully infer the
frequencies with which different possible outcomes occur. Initial
symmetries relative to our epistemic state cannot tell us what the
physical probabilities are. For they cannot even tell us what the
fundamental possibilities are, let alone that any particular
probability distribution over them will be successful. For similar
reasons, neither must symmetries rationally constrain our initial
credences.

Any seemingly a priori expectation we might have that the
frequencies will match the symmetries in a situation really comes
from past experience in a statistical mechanical world. We have
learned from experience how systems’ microstates are distribu-
ted, and we have updated our degrees of belief in what the initial
probabilities are. We have also learned from experience what the
dynamical laws governing systems’ particles are, and from these
what the relevant statespace structure is.

The symmetries in the world’s dynamics and distribution of
fundamental states, and the correspondence between those and
the macroscopic symmetries we observe, explains the success of
our everyday probabilistic inferences. Absent any such evidence,
for truly prior credences, we can rely on symmetry in choosing an
initial distribution. But so too can we choose some other,
asymmetric distribution. Neither choice is more reasonable than
the other; not until we have some experience in the world. For us,
not until we have experience in a statistical mechanical world.
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